Lycée Secondaire Bembla Mr KHARROUBI Mr MAATOUK

DEVIOR DE SYNTHESE N°2 $\mathcal{I}\mathcal{N}$ **SCIENCES PHYSIQUES**

Durée: 2heures

Classe: 26me Scales

Date: 07 /03 / 2012

CHIMIE

EXERCICE N°1: (3,5 points)

1) On prépare une solution (S) de volume V₁ = 400 cm³ par dissolution d'une masse m = 5,08 g de chlorure de fer II (FeCl₂) dans l'eau.

a- Calculer la concentration molaire de la solution.

0,5 0,5

Ecrire l'équation de la dissociation ionique du chlorure de fer II dans l'eau.

1

c- Calculer la concentration molaire des ions Fe²⁺ et Cl⁻ présents dans la solution obtenue.

0,5

2) Dans un bécher on prélève 100 cm³ de la solution (S) et on ajoute une solution de NaOH en excès, il se forme un précipité d'hydroxyde de fer II.

0,5

a- Ecrire l'équation de la réaction de précipitation.

b- Calculer le nombre d'ions Fe²⁺ présents dans les 100 cm³ de la solution (S). c- En déduire la masse du précipité formé après l'avoir lavé et séché.

0,5

On donne: $M(H) = 1 g.mol^{-1}$ $M(Cl) = 35,5 g.mol^{-1}$ $M(0) = 16 \text{ g.mol}^{-1}$ $M(Fe) = 56 \text{ g.mol}^{-1}$

EXERCICE N°2: (4,5points)

On dissout un volume V_{HCI} de chlorure d'hydrogène HCl dans l'eau. On obtient une solution (S₁) de volume $V = 500 \text{ cm}^3$ et de concentration molaire C.

0,5

1) Ecrire l'équation d'ionisation de chlorure d'hydrogène dans l'eau. a- Quelle est la couleur prise par le B.B.T dans la solution (S₁). b- Quel est l'ion responsable de cette couleur.

0,25 0,25

II) Afin de déterminer le volume VHQ de chlorure d'hydrogène dissout dans (S1), on réalise l'expérience suivante :

On prélève un volume $V_1 = 20 \text{ cm}^3$ de la solution (S_1) qu'on le met dans un bécher et on lui ajoute un morceau de carbonate de calcium (CaCO₃) de masse 1,2g, lorsque la réaction est terminée, on remarque qu'il en reste 0,2 g de carbonate de calcium non réagit.

Ecrire l'équation de cette réaction.

0,5 0,5 0,5

Quel est le réactif limitant dans cette réaction. Calculer la masse du carbonate du calcium qui a réagit.

0,5

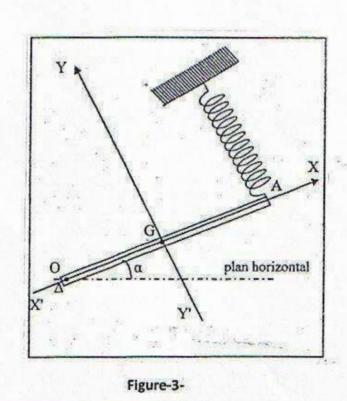
Déterminer la quantité du carbonate de calcium réagit.

5) Déduire la quantité d'ion hydronium H₃O⁺ réagit et la concentration C de la solution (S1). Calculer le volume V_{HQ} de chlorure d'hydrogène dissout dans la solution (S₁).

0,5

On donne: M(HCl) = 36.5 g.mol-1 et M(CaCO3) = 100 g.mol-1

PHYSIQUE:


The state of the s	
EXERCICE N°1: (5 points)	
 Un solide (S) de masse m = 500 g est en équilibre sur un plan incliné d'un angle α = 30° par rapport au plan horizontal. (voir Figure-1 de la page annexe) Faire le bilan des forces extérieures appliquées au solide (S). Ecrire la condition d'équilibre du solide (S). a- Représenter, sur la Figure -1 de la page annexe, les forces appliquées au solide (S). Que peut-on conclure à propos du plan incliné ? 	0,5 0,5 0,5 0,5
II/ Le plan est parfaitement lisse.	
 Le solide peut-il se maintenir en équilibre sur le plan incliné ? Justifier. On exerce sur le solide une 3^{lème} force F parallèle au plan incliné pour le 	0,5
maintenir en équilibre. a- Représenter, sur la Figure-2 de la page annexes, les forces appliquées	0,5
au solide (S) en équilibre. b- Ecrire la condition d'équilibre du solide (S). c- Projeter cette relation sur un système d'axes orthonormés et calculer IIFII et IIRII réaction du plan incliné.	0,5 1,5
On donne: sin30 = 0,5 ; cos30 = 0,866 et g = 10 NKg ⁻¹	
EXERCICE N°2: (7points)	
Une tige homogène de masse M = 400 g et de longueur L = OA, mobile autour d'un axe horizontal Δ passant par O est en équilibre dans la position faisant un angle α = 30° avec l'horizontal. La tige est maintenue en équilibre grâce à un dispositif formé d'un ressort de masse négligeable de raideur K = 20 N.m ⁻¹ . (Voir Figure-3 de la page annexe). 1) Faire le bilan des forces appliquées à la tige. 2) Représenter, sur la Figure-3 de la page annexe, les forces appliquées à la tige.	0,5 0,75
a- En appliquant la condition d'équilibre de rotation sur la tige, calculer la valeur	1

41	Representer, sur la rigure-3 de la page annexe, les forces appliquees à la tige.	A Comment of the N	0,75
3)	a- En appliquant la condition d'équilibre de rotation sur la tige, calculer la valeur	who be to	1
	de la tension du ressort.	3 le 12 8 8	
	b- Déduire l'allongement du ressort.		0,5
4)	a- Ecrire la condition d'équilibre de la tige soumise à trois forces.	SAME WEST	0,75
	b- Projeter la condition d'équilibre sur les axes (X'X, Y'Y).		1.5
	Déduire les expressions et les valeurs des composantes R _x et R _y .	- May 18/12	70401040
	c- Déterminer la valeur de la réaction R.	duting year of	0,5
	d- Représenter sur un schéma clair, sur la page annexe, les forces		1,5
	P; T et R à l'échelle : 1cm pour 2N.		
	Déterminer graphiquement la valeur de R et la comparer à celle trouvée par le	alcul.	

On donne: $||\vec{g}|| = 10 \text{ NKg}^{-1}$.

ANNEXE: A RENDRE AVEC LA COPIE Nom et prénom: (S) (S) (S) Figure-1 Figure-2-

